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ABSTRACT
Stability and convergence for a difference method for quasilinear

elliptic boundary value problems are proved. Asymptotic expansions of
the discretization error, basic for Richardson extrapolation, are estab-
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defect corrections via neighboring problems" [6,8]) and Pereyra's deferred
corrections [22]) are used to defive different high order methods. Some
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SIGNIFICANCE AND EXPLANATION

In this paper we discuss the numerical solution of quasilinear
elliptic boundary value problems in a bounded region { of 'Rn.

Problems of this type arise in many physical and chemical applica-
tions, e.g. in chemical reaction processes, in vortex motions of fluids,
in steady state heat conduction, in diffusion processes and in struc-
tural mechanics.

By applying the usual five point discretization in the interior of
2 and high order approximation of the boundary conditions we obtain
stable discretizations with an error admitting an asymptotic expansion.
This expansion may be employed with Richardson extrapolation or defect
or deferred corrections to obtain methods of flexible order (2, 4 and
5.5).

Due to the increasing complexity of the problems, linear equations
often are not adequate, so nonlinear problems have to be discussed*.
Error asymptotic results have been obtained before (Pereyra [23], 1970)
for those problems but under strong restrictions on the boundary of Q
which essentially are satisfied for rectangular domains. For nonrectangular
smooth boundaries of @ only the Dirichlet problem for the Poisson equation
was treated before (Pereyra-Proskurowski-vidlund {243, 1977). This paper
gives the first approach for smooth boundaries aul nonlinear problems,
generalizing the results in [23,24]). Turther, our high
order methods, based on defect and deferred corrections, save a signifi-

cant amount of computer time and may be used for adaptive techniques.

*Since only a few special treatments, known in mathematical

physics, apply to nonlinear problems, one has to treat most of them by
numerical methods.

The responsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the author of this report.




l : HIGH ORDER DIFFERENCE METHODS FOR QUASILINEAKR
B ELLIPTIC BOUNDARY VALUE PROBLEMS ON GENERAL REGIONS

Klaus Bohmer

Tntroduction.

ans In this paper we discuss the numerical solution of quasilinear elliptic differcnn:ial
equations on a general open bounded region . E_Rn wizn fumitiln o valoe ool
- along the boundary a2 (Dirichlet problem). Equations of this type arise in severa!l
practical problems, one of them discussed in §l. Since we are mainly interested in
high order methods the situation has to be smooth enough.
E We apply the usual symmetric five point formulas in all reaular mesh roinrs X
(all neighboring mesh points of x are in ). In irregular mesth rints (L0 leass
» one of the mesh neighbors lies outside of ) we introduce the boundarv coni  1ons b
T using interpolating polynomials of degree k < ©.
: For k=0 and 1 we have the well known first and second order metho: PER
Z Gerschgorin [20] and Collatz [14] for linear elliptic equations. For k - 2 tne

method is due to Kreiss presented by Pereyra-Proskurowski-Widlund [24] for the Foivsern
equation.

Now, Wasow [28] has shown by some examples, that an asymptotic expansion of th~
discretization error is not available if the boundary values are not reproduced
exactly enough. By a modification of the five point formula in irreqular mesh points
Bramble-Hubbard [1]1] obtain a first term in the asymptotic expansion.

Higher order asymptotic expansions are only known in two special cases: For
quasilinear operators { has to be such that there are only regular mesh points
(Pereyra [23]). This regularity condition is satisfied essentially only for ruzzars:
domains. For general regions ! asymptotic expansions are known only in the Ilriecr.o-
problem for the Poisson equation (Pereyra-Proskurowski-widlund [2%]). In this

paper we generalize the asymptotic results of Pereyra-Proskurowski-wWidlur. to

quasilinear Dirichlet problems on general regions. Since we are mainly interested

Sponsored by the United States Army under Contract No. DAAG29-75-C-0024, the Deutsche
Forschungsgemeinschaft under Contract No. BO 622/1 and the University of Karlsruhe.




in high order results, the situation has to be smooth enough. Our results, a; r - li-

Wasow's (28], are obtained here by combining stability and local discretization eorrors.

In [10) we use cpecial tect

lgues to gpive for llnear ellipric eniation: oo -

considerably better resulis. Faspecially the conditions which we have to impese .o

the coefficients are much less stringent than here aul the error asymptotic for - =.

is nearly as good as here for k=v,

In %7 we formulate the iiscretiration ccieme an: decoribe =ne ajuatisns
obtained. §3 is devoted to a stability preof fsr our methad for R<E using some o ot
Lemmas of treiss, given in [z4]. Since we have to impoce Ii 3 relatively sireony

concitions cn the differential operator obtain

the ¥ -norm, we give another stabillty proof . ‘u
for tge R mnorm, but only for kitd. For k>C we can't rrive .l lty
The convergence of the basic second order method and the existence of an asymptotic
. - expansion pf the (global) discretization error are proved in §5 for k < 6. Two special
cases which allow an extendeé=asymptotic expansion are discussed in §6, one of them
-
treated already in coqnection witﬁ iterated deferred corrections by Pereyra [23].
§7 uses the asymptotic results in §§5 and 6 to obtain high order methods via
Richardson extrapolation. Further it combines the asymptotic expansion with the general
- theory of 'discrete Newton methods" [8) again providing high order methods. 1In addition
we indicate high order methods based on iterated defect corrections via neighbouring
problems [29, 30, 27, 15, 16, 7, 8] and on iterated deferred corrections formalized by
Pereyra [221: The mutual advantages and disadvantages of defect corrections and
Richardson ewxtrapolation are discussed. Especially, when ail mesh points are regular
- the asymptotic expansion may be extended, depending escentially on the smocthness
of the sclution. In that case Richardson extrapolation is not able to compete
with the other methods, especially with the discrete lNewton methods.
The discission of several problems arising in the computation of the different
methods are the topic of %8. The applicability of fast Laplace solvers (see
Pereyra~-Proskurowski-¥idlund [24] and of Newton methods for the original nonlinear

discrete problem are discussed.

2=




)
Richardscrn extrapolation, deferrec and defecr corrections and discrete Newton
. methods are used in $8 to obtain high order methods.Numerical examples are given
in 53.

fimie

————




i. A guasilinear elliptic boundary value problem in chemical physics

In a chemical reaction let T be the temperature, k the thermal conductiv::.,
Q the monomolecular heat of reaction and V the velocity of the reaction. Thon ti

equilibrium of the heat transfer between the heat produced by the chemical reactio:n

and the heat conducted away is characterize? in o F7 iy ihng wgixtl oo [
p. 220):
n .2
(1.1) ¥AT=-V i Q2 {p = 7 =)
. ~.2
i=1 3x,
i

Now, V and T are related by the Arrhenius relation, which reads, in the sim;

case we have assumed here, as
(1.2) V = cv exp(- li)
- p RT 2

where ¢ 1is the concentration, Vv a scaling factor which may be positive or negative,
E the energy of activation, and R the universal gas constant. So we obtain fronm

(1.1) and (1.2) the equation [

KAT = - cvQ exp(- f,i;) in Q
(1.3)

with suitable boundary conditions on 3§ .

For constant Q and k, and T close to To, (1.3) may be transformed into

Ay +y expyp =0
(1.4)

: Ve Q. E E .
with p :=C—v—% . exp(-;ﬁ:— ), U=z —k;: (7-7 .
kRTo 0 RTO‘ -

It is possible to give the general solution for (1.4) in the two dimensional case
(n =2 in (1.1)), see Ames {2], p. 182. The approach given there may be generalized
to the equation (1.3). To obtain a solution satisfying the boundary conditions in

r PN

(1.3) one has still to solve the difficult problem to choose three sultatle futatlicn”
F,f,g such that y, defined by exp y=F(f,g),satisfies the bourdary conditiecrstzee [> ], -
For n > 3 or for anisotropic heat conduction this approach is no longer possible
and we have to find other methods. Here we are concerned with the correspenii'.c
difference analoga to (1.3) and their generalizations and with improvements of the

approximate solutions.

-4-
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2. The basic difference scheme for elliptic problems.

Let ai, i=1,...,n, f and g be continuous real valued functions, defirei

an open, bounded and connected § €R”, lxk and
ntl .y - e s - - N o .
3 CR JTnenwe definearnellipzic iffererntizl operater [ 20 (4. oo

2 = N :
D:={ye (@) N C{D] ¥ (y(x),Sy(x)) e B} =~ (1) » c(3) ,
X€n
n
(2.1) F: -1 Ay, L)+ ECLy), Ty ) dn
Wy >Fy .= i=] il |
b
y(-) = g(-) in 30 J
a. () >a>0.
i > 2
Now let Fy = 0O have a unique solution 2z in Dz with
D := € - = < p}
. = tye ol lly -zl L <ot
2z 1is unique solution in Dz of
(2.2) {
3 )
-3 aj(z, )+ £0,2(),72()) =0 in
0=Fz=1{ i=1 i3 } .
z(+) = g(+) =0 in 3% J
Conditions for unique solutions are given, e.g., in Bers [3].
To define a discretization we introduce a grid T, and the grid lines 0

nL,n Yyt

—
[}

{x ¢ R'|x = (xl,...,xn)T,xi =nhn e z} ,

T
{x E.Rn[x = (xpseenix )T

2]
1]

v
where we have,for simplicity, chosen an equal stepsize h in all directions. The
following discretization is a generalization of methods given by Gerschgorin {2 | and
Collatz [14] for linear elliptic second order equations (k = O and k = 1) and by
Kreiss and Pereyra-Proskurowski-Widlund [iu] (k < &) for Poisson's equaticrn.

With the open set Q we introduce the mesh points in 2 and distinguish between

the set of regular mesh points (slightly different from the Irntroduction)

= i = N
9, = {xe Qlx +he e 9, i =1,...n} 0T

n

€ R,x, =nh,n, €Z for i # v " ,-..4"
i ifi

)

-+




(here e. are the unit~vectors in the dircction of the positive i~th roordinate axis)
i

and the set of irreqular (mesh) points

SN

i= ix€ 2idi : x +he £ . or x - he £ .} : .
1 i h,n

In reqular points we use the standard centered difference approximations for the

derivatives to obtain rue . .i. tive; ool e logslooer T D othe tore
[N,
é h%(e, Fin, (x):= _121 a (x)in (x + he,) = 20 {x) + N (x ~ he )i
.4
2.4 n,(x + he.}) = n {x - he ) no(x + he ) = 1 (x - he ))
¢ R2E G, (x), D : h Bl n._n n|
"'h ! 2h et 2h ]
€ L.
for x h
If x 1is an irregular mesh point, at least one of the x # hei ¢ . In this case we
have to replace in (2.4) every nh(x + hei) with x i_hei f ! by a provisional value
obtained by polynomial extrapolation. Let, for that purpose, x € O i F

ETF SR

but x - he,,...,x - (k - llhe, € {J, . Further let x*, x < x* < x + he_, be the
i i h i i- i
unique intersection of 3{! and the line segment [x, x + hei]. For h small and @2

smooth enough, these conditions will be satisfied.

I

{ ! 1 | IV!

x? x=(k=1)he, x~he, x 7x? x+he
i i i ‘“/// i i
% £

Figure 1

Now we define the following approximations for yx x (resp. yx ): Compute an inter-
i i
polating polynomial Pk of degree k, defined by Pk(x - (v - 1)hei)
2
= *) = * i -
v=1,...,k, Pk(xi) q(xi), and replace in h Yex, SYp - Wty

i%i -1

2hYxi My, - Y., thevalue y, by y, :=P (x+he). If the distance from x? to

x + hei is sih, with 0 < si <1, we find (see Pereyra-Proskurowski-Widlund [24))

oo + AR » Wty - = -




3
v { 1 k
. t - .
; Iy, = (y{x*y = ) a .y
L Y1 ;i N \ -
- l 0,i S ‘
' 2. %
(2.5) | X
Dwith a s=w o= T (s, - /0 -3, i=1,...,n 1
- . i ' =0
| 1
If s, =0, that is x* = x + he, we find +_ . =1, ~« =1, = = 1,...,k.
i i i 0,1 Vel
Therefore v, = yx*),an. i - i ' : (S B =,
e 1
i=w, . and if we use '1h(x + heb‘i) = g(x + heui) in (2.4).
3 LYol oreasols W it o T B L e L LT
i FOr VT l4..., rmtl How we oo 0o Do drrersulg z Ryt Iong corr e N
to (..4) izZr -he case that only = + 31»;-"_,...,::"»“ € . antonoom o= e, €L ae Sitaln
then for x=3(x ,..a,m ) ans s )l ee gty i v Ly )
2 n
£ = - H -2 ” - he )"
h (th)nh(x) 12;1 ai(x) Wh(x + hei) nh(x) + h(x ei)
*i‘bl,---,bm
»
1 k
- - *y Ie - - oo
_ ) ai(x){Ol - {gxn) 1 A, MR m V= Dhe ) =20, ()
1=ul,...,u 0,1 v=}
]
o ) (X +he ) = (x - he)
+nh(x-hei)} + h f(x,nh(x), T PN
(2.6) {
)
{g(x* ) - a n{x - (v - 1lhe N} - n (x -~ he )
aO.ul ul vel  Vely h uy h Yy
|
2h ?
. i
: {g(x* ) - a N (x=(v=-1he )} -n(x-he )
%0, “m v=l r¥n h Y h Ym
h P
+ - - h
nh(x he:‘) nh(x en) for xe @
. > Yy Moit
If instead of x + heu £ O we have x - heu £ Q, it is obvious how the equations have
5 to be changed. We finally aii the boundary values explicitely by
1
(2, 2)iEn, (w)- £ ’ G 1.
Z.7) ((DhF)h,h(r) n, )-g(x) for x € Shun n 30




Wnen stability and censistency are provel tlen | Voilsplioz o -
see Gtetter [28 ], the unique sclvabilizy of (@ Tir. =, -na- i:
FE:=CHR) N (B £ e=in (T, N0 3N -zt

IR Yo YT, 0 A uis
o

. €D :=8, D is the uni @ Iiro= Sorosmzll
Cn “h,z Ah 2 I o
Again by, e.g. Stetter [28], we need for the groct ¢f The zratllite of ¢
(¢%F) only to discuss the stabilizy of (@ F)'(n ) for ':mo-l 2 small erous
N o

derivatives, ¢%F'(y) = (wHF)'-;hy) + O(8%), That mears, u

proof to the discussions cf wHF'(:O): So we formulavte the Q.
affine operator of the form (2..). With contirucus real wvalue! Sunctiors

ai(°), bi('), 1= 1,,.05m, c(+) and d(+), defined on O, a,(*) > a>7 1}

g(+) defined on 3N we have

2 - -
D, : =C (2) N CR) = C() x c(y

0
n )
r - . Dy . . acy’
(2.9) Fy ‘Z (-a (y, o +b( W ) Ly ) s de)
Yy *F y := i=1 i i 1 } .
d i
in @, y() -~ g(-) In a0 J
In regular points the discretization thd in (2.4) reduces here to
n
2 2
hoe, Fon (0 = (2 izl a; (%) + h% (o) (0
n n
(2-10) + ] (-a 0+8 b i (xthe )+ T {-a 0 -Db 00 (x-ne)
. i 2 i h i X i 2 i h i
i=1 i=1
2
+h7d(x) for x € Qh

In irreqular points those nh(x + hei) in (2.10) have to be replaced by expressions

corresponding to (2.5) for which «x :_hei £ Q. For the stability proof in §3 it is
only important that ¢hF0' Fo 1= Fdld=0' may be separated into the sum of dis-

cretizations for ordinary second order equations. So we have for regular points:




!

b
¢
1

R 10

I n . .
2 J 2 c(x)
> n = (12 —_—n
! h 2, Fom, () izl a ({12 + n : SEI
i i ax(x)
(2.11) v=l
r b, (x)1 4 b (x)-
h "1 . h -
J + =1 = + h +3-1- = g - e b for
| RERS AT LML IR BRI Sy (RN i
1 e 1 -
Again, for irregular points the nh(x * hei) in (2.11) with x + ke f wave

replaced by expressions corresponding to (2.5). Further, we add (2.7) for the broulis
points ¢ obtalin a system of linear

it iz enoush o study the properties of the ua

2 - -
(2.12) h ("hFo)nh(X) for x € “h and for x ¢ —

This matrix A may be written in the form (see Pereyra-Proskurowski-Widlund (24
n
(2.13) A= j PAP

with suitable permutation matrices Pi. The matrices Ai are obtained by collectine

only those contributions in (¢hF0)nh(x), which are multiplied by a fixed ai(x) (o
(2.11)). Therefore these Ai are direct sums of matrices of the form(.-"-"',
we use the abbreviations to be intreduced in (2.1%)
(2.14) B:=
t [} ' ] N
2 M1+ =%y %34 t g
aO 2+h qofaj-po,‘po'fa—,po, ?-po s * 8 * geeees3Ti P s . . . . . s -
o o ¢} [e]
| + 2 - -
a; i Py , 2th 9 » Py 3 0 , 0 4000y O L, C 0y o o 0w e
|
; 2
a 0 s -D , 2th q2,—p2 s, 0 4veees O L, 0, o o 0 w0,
. i
ap ) ¢} s e e e e e e e , O B T 2+ Qe S
ak N ASNf _“+*&2 + . .
ai 0 N . . . . . . . . ,G_pQ 3—}; s TF J—?Q, - < T
¢] > e

3

TV MR VTl NIRRT NI o 1 i (VR g




- ——— .
The a =a t=),zeel. . gl orort crotre watvin clve oo taoton WA
v v ‘
has o be Cetelfed, Taoh matrin tocorresponds o TIod TINITEL LLIRTORTT.
+ - . . . . A
[Xi,x;] can Sy n in the direction of the coordinate vector =:.'i.:° otk
.
- - see Figure 2. For simplicity we have used the following abbreviations
b. ()
| 1 . ). = NER
a(+) :=a (), y (o) 2= | o Gtede=
* Vx,,x*) ai(')![x x*) -
! T G e
vz L’ *]
R sati=a!
LN U S VAR N
. : . +
(2.15) intersectinn . or
let a = a(\/), ) - -
+ h - .
N S A N
%~ x x x x X X, x*% /;/
-4 0 1 270 =1 [ i/ T+l
> o - » . . . — e i d - " i i e 2 i - -
S ;
i \ R n T

Figure 2
In our discussion we have confined the coefficients ai(-) to be functio-s of the
independent variable x €  alone. Yet, we could generalize the whole discussion in

§§2 ff. to the case

[}
ho~3

a, (-,z(:),z. Nz _ () + £(,2(-),92(-)) in Q
(2.16) Fz :={ i=1 1! x5 ®i%5 -
z( ) = 7(*) on 3

with a;(-,z(:),z () 2a > 0.
i

-10-
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Then we would have the deriva*:ive

(2.17) F'(ylu = {+

(2,1,0)

YYu (=) + a,
X X i

(0,1,...

which is of the same structure, but more corplicated than

In 53 we give a stability proof for (2.12) and X

M)

(v i),y )Yu(s)
x

(v (), oy G gy

by showina that

-2 . . .
A < Ch for the matrix A defined 1n (2.12). S0 all results based on 23 are
2_

results for the Euclidean norm. The conditions which we have to imposc are rather

stringent. Therefore we give another,

k < 4 showirg that [[al]_< ch?. so.

much caslier, stability proof, valid only for

using this &4 with its less stringent conditions

- PYS S, « « o e o .
sup-norm results are obtai.ed. Since k essentially @of
in the asymptotic expansion both cond wrar i [ERINE

-1~
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3. stability

By stability we mean the uniform boundedness of +the inverse 2ieras

the difference operator in a neijni -

To prove this property for the method, defined in (2.4)-(2.7), 1t 1s cnen:n
stability of the discretization for the linear problem F, In (2.9, W

Fy:=F'(2)y a7 from (..0):ee ce-ter [ 1,5 T, e
. . ) C-1 -0
prove that the matrix A, defined by (2.12), has the prorerty A b T,

For that purpose we use and generalize some of the Lemmas, due t2o Kreidss, iver

Pereyra-Proskurowski-Widlund [24}. The norms in this paragraph arc X [o3<:7 0

i

Euclidean vector norm and the srectral matrix norm (W- )

Lemma 3.1 (24): Let the symmetric part of a matrix A satisfy

(a+al2 61, 50

Then A 1is regular and HA-IH < G_l.

n
Lemma 3.2 {24]: Let A = Z pZAiPi with permutation matrices Pl. If
i=1

. . - X - . .. - -

(A, + A11/2 > 6T, & >0, for all i,

Then

(a+ah/2 > nér .,

Lemma 3.3 [24): Let the matrix Ai be the direct sum of certain matrices Bii. 1f

(3.1) (B,, + BX.)/2 > 61, & >0, for all j .
ij ij - —_—

Then

(a, + aTy/2 > 61 .
1 1 -

We have seen in §2 that the matrix A i: (2.13) 15 the surm of matrices E.
the Ai are direct sums of matrices of the form (2.l1+) and F, ars permutatl.n =ity
we have assuned h so small that x € Qh i implies, e.g., x + hei € © and

’

x - (v - l)hei € Qh for v=1,...,2k - 1. Especially we have therefore in (2.14)

that ¢ > 2k - 1. With the functions a, p, g, arc a @09, Iner Guvel Irovl LTy

v’

with indices changed for convenience, we may prove as ir. [.«] <he following

-12-




Lemma 3.4: Let the matrix B in (2.14) be split into two matrices B, E., whuore
. . + - . PR + <«
with pv and p\) l_'“ (‘.45),
3.2 B :=
(3.2) 1
2
- - g -p, 0
a1 2 4 1
+ 2 -
- + = \
P Py Mg, Py .. (//_\\
AR T2 T L
a -1 0 O o Ppoy o i#hig ., -F._
(s [e3 a- - F
+7k +73 + _+*2 ST S
’ °n L ° O e O s s P, TRt RSt
° ° (e} i
Let B2 be obtained from B1 by inverting the order of rows and columns and changing
m to m' and a, to a;. Further let
- ..‘ . . . m+m'=l'+l,°'m2'k;'m"1k. - . - ... L e ..
If

T T
+
(8, Bl)/2 > 86I and (B, + BZ)/2 > 81,
then
(B + BT)/2 > 681
Before we are able to prove the next Lemma we have to do some preparations. We obtain

the symmetric part S of B as

1
11 %21 0
S21 %22 %32
S32 %33 %34 0
* (3.3) S := (B, + BI)/Z = - -~ S~ s
1 > o ~ S o mm-k+1
\\ ~ \\\\ -
~ ~ ~
: Sm-2m-1 Cm-lm-1 “mm-1
[ ’ 0 == O Sppkel U7 Smm-l Spm




where
2
h 2
S " al(l + el ql), S, = av(2 + h q_v‘),
a1
h 1
s =a(2+h2q *(1+—p)—-J,
mm my ™ 2 m a
_[av+l*av+}l(a - a )
vilv - T2 a uarPua T ARV
(3.4) 1 f &m-v+l
s =+a (1 + 5 p ) ———,
mv m 2 'm Zao
s =-am+am—1+}—1(ap—a o) ) - a
mm-1 2 4 m m m-1"m-1 m
s = 0 elsewhere
VH
Let us now assume that
r€3+a+* €2+a+* €l+a+"
a€C [xi,xi], p€C [xi,xi], q€C [xi,xi

+ % .
a(-) > a> 0 in [xi,xi]. There exists

- + + * * A
x€ [x. + (k+1=~s )R, x, = (ke+ I*- s _yh] wic
i i i i

a' (x) 0, a'(:) >0 in [x;,ﬁl and a'(-) <0
.2

[2aq - a" +.sgn a" (ap)' +

a12
2—3}"’

(3.5) «

[Zaq +{sgn a") (ap)' -

+ -
1 in [xi,x) for a > 0

sgn a':= o
-1 in (x,xi] for a' < 0.
m+Q o + . .
Here C [x,,;q] means that all derivatives up to the order
i

. + * .
continuous in [xi,xi] with exponent a, O < a < 1, For ig

the forelast inequality (2c+) in (3.5) includes the last (>0

+ A A *
a'(-) <0 in [xi,x], a'(-) >0 in [x,xi] in Remark 3.7.

h

Now we choose the numbering in (3.2) such that I)'E-xl|< 5

-14-
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a . +
—)(-) >c¢c >0 in [x,,x
a - T+ i

V=2,...,m - 1,

V= 2,0..,m = 2,
v=m-k+1,...,m- 1,
a
h 2
(L +-p) — [
2 °°m 2aoj
1, 0<ac<l,

)

.k
in [x,xi]

*

1o
1

. yo* .
>0 in [xi,xi] , where we define

{2aq -|(ap)']}(+) >¢,>0 in an interval of length > h with the midpoint %.

are (uniformly ) Holder-
2
a
J( ) e,

E A —
).%We will come back

m

to the case

vt AR




W

)
where the Ruv and the rv are defined in the usual way, so, e.q.,
= R ¥ s /r , =1l,...,m~=2
Sll L\Ml\) qv*lv rv "
(3.7) _ . . R = -
r *welv  Suvely  Susludl” Leeoowm =2
To give the an and r, we would have to introduce the wheole algorithm. Since we
. . . . . e e e e e . . .. e . e e e - o s e . . ¢ . .
need only the properties, given in (3.13) for the Rmv and in (3.14) for rm
o we do ot give the explicit results corresponiirg to (:.7),
Using the symmetry of S and the properties of the ¢ one straisht turewar:
P vtly
verililies
Ty C
L ~N
N
T T
(3.8) S=1L - S <L = LDL'
N
‘ O ™.
r
m
So we will study the matrices
E O
L r
0 2,
T (3.9) L = and D = AN .
T N
b ’ L 1 O Fm-1
r
] m
L3 .«
1z .

-15=-
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We obtain from (3.4)

) H
- h h '
(3.10) Soelv -la v g a - T [am' + o ) <
and, by induction, one shows that @ ! J31,...,"-. ’ .
) ’ 2 v-l , '
h - 1
(3.11) rv=a“« 4—{‘_ dag - 2la; -y - Jla da y
v Lo ‘ )
For the inductive proof and for our later discussions we need o ind we tand o :
(3.7), (3.10), (3.11) that
2 vl 2
hi' h = vl T
= 2] = = e - ) - q) tlagl’ o
v+ly b3 1, 4 1 Lottaey e daad, .
L=l
(3.12)
for v =1,2,...,m- 2 EEIE RN SR SO
. T . .
The vector £ = (0""'o'lmm-k+l""'imm-l) in (3.9) is proved, by similar arqument:.,
to be of the form
(3.13) T = L (0,...,0,a ,a + a peees + cce 4+ a ) + (0,...,0,C0Ch),...,0(h)) . .
2010 ! k" Tk k=1 k 2 —————
L] . - - - - -ok-l. - - - . - .. - X R - - -
Further (3.8) and (3.13) imply
i m=-1 a
Y =8 - Z r 12 = a {2 + “1
m mm vem-k+1 v mv m aO
(3.14) . , , uk+‘--+a2 2
-~ la + --- + (a + - +a )7} - [~—————————— - 11 +0(h) =4 (s}t (b ,
2 k k s 20 k
4o . o) d
0
where we have used (see (24] and (2.5))
1 ak + eee 4+ (uk + . + u2)2
(3.15) dk(s) = rm(h = 0) = am{a~ -~ 3 }
0 400

This rational function dk satisfies (see [24})
4 (s) > c (k)> 0 for k=1,2,...,6 and 0 <s <1,
whereas it changes sign for k = 7 and 8. Therefore, for h sufficiently small,

we again have

-16=-
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D

c+(k)

(3.16) rm(s) > >0 for k =1,...,6, h small

These results allow the generalization of Lemma 5 in Pereyra-Proskurowski-widlund {74]:

Lemma 3.5: Let dmin denote the minimum in {0,1] of the function dk defined 1in

(3.15), let (3.5) be satisfied and h be_small enough. Then there is a poai-

tive constant C, independent of the mesh size h and the region {, such that

S > &I with
(3.17) Py 2
§ = cdminh /{diam(Q))

Proof: Since we need estimates of the form (3.17) we give lower estimates for

m
. T 2
xTSx = x'LDL™x > min{r_} O 17"
et v 2
v=1
l 3 -
Now by (3.5) and with v <m < O () we find by (3.11) r,= a  + oth), so

r > av/2 > 9/2, v=1,2,...,m -1, and with (3.16)

v
(3.18) x'sx > minfa,e, )1/2 - [lL™x||3 .
- =T : .
We try to find an upper bound for [l L Ty{[Q since L 'y, <clly’ c €F_, implic
llLTx||2 > c_lllx [{2 . Withy €R, yT = (?T,ym) ard &', Ly in (3.9), one

verifies, since L is reqular,
T -1 _ T _ -1
y L = ((y lei%Lll:Ym) '
simply by multiplying the equation from right with L. Since the uv/u are of the form

0

s . . . ; -
Bvlo(k) e and since the vector £ in (3.13) includes only av/ao, v=2,...,k,

has a uniformly bounded norm in 0 < s < 1. So

- 2 =ly2,1-T 2 2 -1p2 2
L™l <N ISy, + Dy el + by 1% < cdlel 115 + oyl

Now, since

=12 _ : T -1
||Lll||2 = (smallest elgeévalue of LllLll) '

we are going to estimate this eigenvalue. The definition of L in (3.6) and (3.9)

11

leads to

. gy ey o 4

——




: 3
! 21 |
R 1 .2 .
21 0 a1 a2 ;
~ ~ !
~ N o N 1
~ N ~
~ N ~ }
T ~ ~ ~
L. .L . = 2 [
? : {
1 vi-l RIS VS Y {
~ ~ ~ |
~ ~ ~ 1
~ ~
~ ~N N oA i
~ ~ m=1m- {
~ ~ 2 i
‘m=1m-2 “m-1m-2]
We use the well-known theorem of Gerschgorin [18]) to ©:
. .2 | | \
(] - je pe 1 ¢ - i R ;
-1 z . -1lm-2 m-1lm-2 2
(3.19) Ho .7 > min 21 n m-lm % - ooh
1z - 1+l - Ji ! i | p =2 Somo= 2 !
RS | “uv-1' velyt’ ! !
with ¢; € R . We find, with 'x;—ﬁ‘ <5, a"(R) < T ant eyt Tieln
1-12_ .1 > Ei {2aq-(ap)'}. for x. < R
F21 2 Eay 2l A
(3.200 ¢ :-12..! > Ez {2aq-(ap)'-a"}. for x, > &
. - 21 X ua q p S 12
L3 1.‘ . - - - - . -
1422 -1 Yz 1+c(h),
m=1m-2 m=1m-2
Ignoring, for a moment, the Vvo(n)-terms in (3,12) we £ind
r 2 i 2
') - qe - |2 = ¢ -
1+ vu-1 'va-ll 'Lv¢1U] (- vv-l) ! “v+]v Evv-l
2
h a'’ (ap)'
> 5 - = _8p
(3.21) 1 22 {zq <! a
v
3a o ov-2 v 2
h -
s VLY pqap) ¢ 2 - dag) + oD
2 2 a u
a u=1
v=-1

: ; 1 . .
Since v might be [El we cannot neglect the h3 + L - term. Combining (3.20) and

(3.5) we find (3.19) satisfied. We have ignored the vo(h3) - terms in resp.

?
v+lv

(v - l)O(ha) in zvv-l' That we may do so is shown by an elementary straightforward,

but very lengthy computation, essentially by showing that for these vO(h3)-terms

2(v - Do) - vomd) - (v - Do) = omd

-18-
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. As a consequence of (2,12),07..1) we = ve o,
(3.18) lemra 2.5, O
Remark :,.: The conditions Lo
) only purpose for a' : ‘
- term in (3.:1)~ =S
limitirg, properties, We ger <hre:n, wit!
X
. V-l 1 2
i - (a + (— - 4aq)dx
- aV-l (ap)\)_1 ( HO i 3 q R
“o
condivions of the tor
- a'?') w=d
( a t2aq - a" - (ap}' o+ S o+ a' 7 (2(am)’ o+ - d4aq) c o
. ; a - v L Lom
v L=l
‘ wher. 1/v- h or
‘ 1 A 1
.. a (ap)
R P e
(3.22) { 2q 3 ’ 2, or
‘ v
i
' g
' (ap)' 1 =1
. g - (2] - ten2 ay e,
[ a a v a qv—l( 1 +
v=1
c et : framee thof Oroer Thene coniivions wiih % Ihiogrise . partial RTINS S U
- equation L oeven more complizited to check in conirere problens than (<.7)
we cont e our further G ocaision to C0,9), of inoa special cace (-0 should
satistied one still can try o verify the -orresponding conditions base! ou the
inequaiities given in (s..c). O -
. . . . + . .
Remark 3.7: We have confined our discussion to a' (-) >0 in [xi,x], a' () < O i
»~ * . . . . .
i [x,xi] . If the distribution of signs changes, we have to impose
*
L]
.
t .
: -19-
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3+ - + ¥ 24t ¥ Ll v * - _ .
a€c mi,xi],p €C ki,xi],q € C hi,xi], T<a <L,

*
e

>0 in [xt,x.
° + + * * .
There exists x € ki +(k+1—si)h,xi-(k+l—si)h] with

*
a'(8) = 0, a'(+) <0 in k;,ﬁ],a'(’) >0 in [ﬁ,xi] ,

a(') > a

(3.23) {2ag-}(ap)'|}(+)<C_< 0 in a neighbourho:d of X,
12 *
{2aq-a"-(sgna')(ap)' + 3;— o) < C_< ¢ in k;,xi],
a' + ¥
{2aq-(sgna")(ap)'~ —g—}(>) <0 in &i,xi] s

I3 A *
1 in (x,xi] ,

. + A
-1 in &i,x).

with sgna' ={

Then we find S < - 8I, § > O and Lemmas 3.1-3.4 remain valiz, if §, > is replace.
by -8, < and the main result)iA-l}]fé_l stays unchanged. So we find again the

stability result!IA-l|lg ch?, c>0.0

Remark 3.8: If we want to prove the result corresponding to Lemma 2,5 for I, the

order of the indices in (3.2)ff has to be inverted. That may be simulated by the P
transformation of x into -x, and ir (3.,20), (3.21) a' and (ap)' change into . .
° * ) -a' and -(ap)', the rest stays unchanged. So conditions (3.5) imply Lemma 3.%
for S defined by Bl and by B,. o
Finally we want to point out a very important special case:
Remark 3.9: If a = const, Lemma 3.5 remains valid, if (3.5) is replaced by
* x {
p € L%, qe M Kt,x], a> 0,0 <a<1
171 i7" 1

(3.24) *

(2a-]p'NC+) > ¢,> 0 in [k} ,x;]

p 2 Cs %50 -

In (3.24) one may replace 2q-|p'| by one of the conditions

2q + p' for x > R and 2q-p' for x < &
respectively

2q - p' for x > & and 2qtp' for x < R

* *
where R is an arbitrary point in &; +(k+1-sI)h,xi -(k+1—si)h]. o
L]
Combining Lemmas 3,1~3,5 we obtain
-20-
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Theorem 3,10: Let a, p, q introduced in (2,15) satisfy one cf the cornditions

(3.5), (3.24), (3.23) or (3.22),let k < 6 and h be small enough, and let A be *he

matrix defined in (2.12) - (2.15). Then there exist constants ¢ > G, independent of

h, such that
-1 .
(3.25) la™~] , < C (diam 2 - nl.
If we apply Theorem 3.10 to a linear elliptic equation of the form (2.9) we obtairn

~

stability result in the sense that the inverse operator to thO,
is uniformly bounded for h = 0. For the nonlinear discretization (2.4)-(2.7) the
stability is understood in the above sense for the operator F'(y), where vy is
close to the exact solution 2z of (2.2) (see Stetter [26]). So this "nonlinear"”
stability property strongly depends on small enough ||y - z||. We only formulate a

stability result in this nonlinear setting for problem (2.2). We will treat the more

complicated problem (2.16) with the much less restrictive conditions in §4.

Theorem 3.11: Let k < 6, h be small enough, and for small ||Y -zl and i ..ol
3+, , (0,...,1,0,...,0 . PR 1+ N
. di(') €CT TQr, Pi\') = f 0T ; °)(-,y1-;,Vy\-))/ai\') € ey
i+2 . .-
(3.26) I 5 1,200,

n
0,1,0,..., .
a() e= g0 10O oy T ayer e ey, o<

v=1

. R . R + % = .
Further, let for each maximal intersecting interval [xi,xi} can Gh (that o

+ % . . R i
RiaXg € 3Q) in the direction of the co-ordinate vectir e,

1

st A.€

+ + * *
[xi +(k+1—si)h, xi-(k+l-si)m such that

T ) = Y. 3 *t o . 3 - *
ai(xi) =0, 2,() 20 in lxi,xi}, a, () <0 in [xi,xi],

{2aiq-|(aipi)'|}(-) >c, >0 in an interval of length > h with

(3.27) 4 middlepoint &,
a!? -
- aff g [ 1 . 3 +
{2aiq af + (sgnai)(aipi; + ———ai o) > c, >0 in [xi’xi]
\

A
) - ; t
{2aiq +(Sgnai)(aipi) 231}( ) >0 in ki,xi].

Then the discretization, defined in (2.4)-(2,7), is stable in the serse discussed

-21-
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3=
or more corpiicared cendi-ions tasel on (3,100,
we want o formulate [ S EJ
Theorem :,ll: Let W < §, T8t oa TIr Ima.l endig’
v - ' ani smeoth enougn
syeeesl, .0 2+
l’ p. () c= g od Yvey, oy e 20,
! i+2
|
| 0,1,0,...,0 - 1+
i gl gl0e1:0 Dvrtyey e e, 0y <],
(3.28) ] :
! n
boo2a0) - ] pity 2e, >0 dna
i=1

Then the discretization, defined in (2.4)-(2.7) is stable.

Proof: Theorem 3.11 is an immediate consequence of Theorem 3.10. Thenrem 3.12 is

derived from cordition (3.24). By

H

q. ()

pi(*)/2 + ¢, /n, i=1,...,n,
i i

. - . o . i=1 1 . .
* *
q, = ql* LA PR Y i=2,...,n

we have found pi, qi, i=1,...,n, satisfying (3.24). g
For the special case of the Poisson equation

p. (") =0, i=1,...,n, af{-) = 0, that is
n
(3.29) Ay + £() = - ] y (+3 + £(-) in

y(*) = q(-) on aQ,
the stability result corresponding to Theorem 3.2 has been proved in Pereyra-
Proskurowski-Widlund (24]. We can not include this special case in our general
Theorem 3.8, since {3.27) would correspond to c, = 0 in (3.24). The proof given

above breaks down for c, = 0.
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4. Stability for k - 4 under less stringent conditions.
For k ° 4 a much easier stability proof may be given. If P 1is a . > . rpermuta-
tion matrix, then PT BF and B contain the same diagonal elements only in a changed
— order. Further,the elements found in the same row . . “olumn with bii will be found in
that row and column which are c-:: . -0 - . . i 7w Ition Do b eoTert o e
- cermutation, Wit - soeloas
Lemma 4.1: let P be a permutation matrix. Then B = (bij) is diagonal dominant if
. T — .
and only if P B P = (bij ) is diagonal dominant and
L u w _ oo
) min (b . - ) b, [} = min (b - ] b 1.
i=1 j=1 M i=1 j=1
J#L J#L
Further we need the elementary
N
i lemma 4.2: let A= Z Bj = (a“), let each nontrivial row in Bj = (bji\) be diagonal
i=1
dominant with positive diagonal elements. Further let for each row of A exist a non-
trivial row with the same index in at least one of the Bj . Then A is diagonal dominant
¢ and
u u 0 u u .
min {aii - Z laii“ >+ min min | b'ii - f lbi.{(x .
-. A.. .. - . s . . i=1- =1 *° . 3=1 L 1=~1 . 1 f=1 > ‘t ~e . - . .
o i <
#i bJu#O i
Now if we want to prove stability it is enough to show that the matrices defined in (2.14)
are diagonal dominant. For that purpose we need less stringent conditions as in 33 (see
(3.5)).
.3: i 2.9 R isfy
Lemma 4.3 Let in ( ) al,bl,c satisf
a, ,b,,c e C(R), 0<a <a_ ()
i°7d = — i
n *
(4.1) 0 <0, cal)i=c()/ ) a(s)<Q
i=1
b, (*) *
i ;
“a—(‘T" :Pi' i=1,...,n.
1 o
n *
Then for h < min {2/Pi} and k = 1,2,3,4 the matrix B = (bi') in (2.14) is diagonal
i=1 ]
dominant with
s ’ £ 4 2
. i b,. - ‘s > c, >0.
(4.2) min (b .Z |b1]|}_c+h e,
i=0 j=0
j#i
-23_
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n L4
Proof : Under the assumption (4.1} and for &1 - min -2-p we v Wit
n i=1 *
c(')/>: a. (+) and p(*):= b, (*)/a. (*) (sec (2.19))
. i i i
i=1
2 h 2 2
- - 2+hqv—({-1—g-p + -1+ =p )=h g -h 32,
fl" t
Further, the jlr- and - , v=1, +k, have alternating cign for .
o Q
X
L 0 So Wi il thit, utler the zosirps [ < .
"o
lr ‘1' h N
3 h h 2 ; ,
e e Spg) - (-1 + SRy Ig“*z‘%’ + s e
W+ oaxl o= e - +...+<—l)kz
P B U NN 2 3 4 koL
: 2p0 2p0\ N <,
¢}
for all *h !
) i (DO POEN
k
al al = ol + L.+ (F1) s
gk(S) =14 2E 2 3. b >0 for © < s - 1.
3 - sz

Now one verifies either by straightforward discussion or by using computers that

1,2,3,4.

min gk(s) >0 for k
0 <s<1

< 0 for k 5,6.

So (4.2) holds just for k = 1,2,3,4 and the Lemma is proved.
Combining Lemmas 4.1 to 4.3 we obtain by Gerschgorin's Theorem [21]:
n
Theorem 4.4: Let (4.1) be satisfied and h < min {Z/P;) . Then the matrix A is reaul.r

i=1 -

and there are positive constants Dk such that
-2

-1
I < *h
ia |m_Dk

In contrast to Theorem 3.7 we have an estimation for . ~ - lrates:

Since in the proofs of our Lemmas 4.1-4.3 the coefficients a; in (2.1) only had to sati:z?
(4.1) and since we obtain stability for the nonlinear problem simply by proving stabilit:

for the linear problem we can generalize our Theorem - .- immediately to the more genera!l

! case given in (2.16), (2.17):




e
Theorem 4.5: lLet =z be the unique solutiaon of (2.16),: < ~i {I/F*}, ani le-
izl -
f
| [ 0<acaC,z()z () in 2, i=12,...:m,
] . 1
! (0,1,0...0) T (0,1
.- 0 < < {£ Py gzeen - T a0 sy (hz ()
; i X, X, X,
i=1 i i
% -1
x( Z a (+,z(*),2_ () <go* in @,
. i x, - =
i=1 i
*
- and , with P; in (4.1), let
(0,...,1,0...0 , .
@.3) [(gQeoseds Yz, 200 - al%% D oy ez (o
117 i X, X%,
1 11
- x(a, (,2(),z. (N <pr in Q
it Zx. T
1
. . . (0,1,...,0)
with continuous functions a ., £ (*,2(*),%z(*)) and
’ 0,...,081,0,...,0
A O T O R O T
Then the discretization of F in (2.16) 1is stable in a neighbourhood of the oxant
solution z.
)
-25-
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S, Convergence and asymptotic expansion.

With the stability, proved in .3 and 4, we obtain convergence and asymptotic expan-

sions by studying the local discretization error. Before we do so we need some formal

- (o] ~ N .
notations. With the spaces E := C2(;) x c(0) and E := C(2) ~ C(-l) and the grid
; G, e efine
1Tt g 2 Y
¢] . }
= = = (G a) R
( By t= By o= (npaby Chn h.n
with one of the norms
Kngh, o= Hogllp o= max I (%) or
x € D .
h,’
0 n P }1/2
i= i = {n Tn (%)}
5.1) ﬁ gy 5 = Il o (- g X "
h,.
and the restriction operators
0 0
\ L E - E o { E E_
1= B .'}’ : }
n y ¥l o) ol gl 4
L h,s h, . h,n
Now we have (for B see (2..))
. . 2(q+l)+a, = 3Y (0,0 V)
Lemma 5.1: Let in (2.2) the solution z € C (Q), - grzptataVpre Yy
3z, ..0z ©
v n
a "u - _ _ .
and ——————— F(oye,s )ECT(Q x B) for v 4...4v_ = Vv = 1, ,...,q, and iet
1 n - 4 a4
3z ve.s02Z
1 n

the usual formal differential operator in the multivariate Taylor expansion

3

be given as ( 1 85 33 )V. Then the local discretization errcr (@ T) A 2)
_l had ) i

is given in regular points i as

- n q+l ., 0 3.
RPN () = | {-a 0 ] fay L)y
i=1 j=2 230 Bx,'J
q q
2 2 +1 v
2 o fF n®d REICI N
(5.2) +h z 1 Z (.E eares TEars §ET flx,2(x),Vz(x)
= j=1 9% 1
l~ + O(h2(q+l)+n) for x € 2
q+1
In irregular mesh points § ysumming the lerivatives of z, have to be '
changed in the followiggﬁway
Let 2* € Cg(q+l)+a(9‘) be a smooth extension of =z , where Q* 5 Q is large enough *

to contain all grid neighbours for irregular points. Then use
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. =
%
 q+l 2 23 s k+1
z 2h 3772 (%) . i hk+1 N z*({i)
i) ! j k+1 —_—— resp.
j=2 (23) ,x'zj Y p
i Xy
k+l -
q ~ - a *(z
. ; h23+2 §2J+lz(x) . s; hk*z z (’i)
o s ,:1 (25+41)! 3% 23+1 2 (k+1) % k+1
(5.3) J i i
with gi,Ei on the gridline through the point x
- in e, direction and i-th co-ordinate in
L (x *(k~1)he_ ., x * he,)
i i
q+l q
for the corresponding Z resp. ) in (5.2).
- j=2 j=1
Proaf: rrediately we finov o) Wit
e .1 25
u{x+h) - u(x~h) _ | : h (23+1) 2. =1+
] T RN C O jzl 5T e {(x) + O(h )
and
(5.4) Ut )= ul) 1 outa-t) : 2 (i-1) ; 20—
2 = u"(x) + %—-—)—I—U(ZJ)(X) + O(h : 2‘.1)
h j=2 J):
¢ 27 by
L for any u . C°* “(x-h,x+h),
Now 2z € Cz(q+1)+a(§) may be extended to a 2z* ¢ Cz(q+1)+a(9*). Such extensions
exist , but they usually do not satisfy an extended differential equation (...).
Further, since we can split {5.2) into terms, each one only involving derivatives with
respect to one variable, we may coniine the tiscussnion now to wrne variable-
Since we need the local !licrerinatlioy error, we have @ vl lace y. in (I,5) by oo,
ot tained as :1=Pk(x+hei), where ir 15 defined b ?H(x—(v~;ixei) =z, NS
P}(le = g(ﬁ;)v. o we have, b cihe well xiLown orror o tor polynomial
interpuiation,
(x+he  -x*) (x+he -x)... (x+he -x+(k-1)he )
z(x+hei) -z, = 11 i i i -z(k+1)(f,)
! (k+1)!
k+1
(5.5) N AL
T —_—
k+1 ax.k+1
\ i
p
By inserting (5.5) into (5.4) we evidently obtain (5.2), (5.3). 0

-29-




b . -(n-1)
Conmbining formulas (5.2) and (5.3) and observing that there are only Of(h )

irregular points one obtains

Lemma 5.2 The local discretization error (\oh:”)(Ahz) admits an asymptotic expansiorn

the form

2

h k-1+1/0)

= O(h

Il o~7.Q1

- . _ AC
It (¢, F) (Ahz) Ah

‘g
§ g21 h,C

1
(5.6)

tA

~y Tom o L T
SN , .

for 2q < k-1 + 1/g, anl 0./, X

4

where the g, are defined in (5.2), (5.3).and q < qas in Lemma 5.1.

Again, since (5.1) can be split into the terms mentioned in (2.11), we may use th:
arguments in [7] to prove Theorem 5.3. In this Theorem we only give conditions for a, , £

+24a , - . L )
2q+2 Gl(u). The more or less "geometric" type conditions, give:n

and g,3N to ensure 2z € C
e.g., in Agmon-Douglis-Nirenberg [1}, §7 are only referred to. If they are valid, the

smoothness results for the’ e21 are ensured.

Theorem 5.3; let, for k<4 and k < 6, the Il-llo-norm, g = » amnl  g=2, the condition
i = Aot = T
(4.3) and (3.26)-(3.27) or (3.28) be valid respectively.let further z€ CL(Q\,atE ST,
2g+a =
£(ore,0) € CCT%axp), 30 € AT g ?*50) for 0 <o <1 and
k -1+ 1/0 < 2q+a, and "geometric" conditions (see [1], §7) be satisfied.
Then z ¢ C2q+2+a(9) and we have for the approximate solution oy,
—_— n !
- Az = A %h21 + 0(hk—].+1/o)
“hT BE T A LR ey

(5.7)

N
for g = max{m ¢ N|2m < k-1+1/0, m < q}

k-1+1/¢ )

tiere  O(h refers to the difference with respect to | ¢l 0,0=2‘,°°.I“n‘t':;e: WS AN

e, () € cAlasi+zia gy e, () =0 on 30, 1=1.2,...,9.

¢5.7) corresponds for (3.29) to the result of Pereyra-Proskurowski-wWidlund ([24].

A result,given in Agmon-Douglis-Nirenberg ['1], §7, may sometimes help to avoid

2g+2+a

difficulties arising from the violation of 32 € C in isolated points. Since in

all our proofs we only need differentiability properties along grid lines, one only has

to choose the grid such that its lines avoid non-smooth boundary points. Then the

results in [1], §7 may be used to obtain results for the case h0 >h lh1> 0 , which

might sometimes be useful.




“Q
;
6. Two special cases. ‘
The breakdown of the asymptotic expansion in Theorem 5.4 is, for a sufficiently smooth 1
situation, caused by the interpolation error, given in (5.5). This error will be less
disturbing in one of the two following cases:
o~
; (6.1) Let s, = 0, i= LIERRRNY (see (2.6)), in (5.5) for all x ¢ :ﬁh'i
(6.2) We admit only h, such that
‘ . s; = const. (independent of h ), i = Mpreesriy o in (5.5) for all x . “hoa
The second case is, admittedly, somewhat artificial, but if it is satisfied we have
instead of (5.7) the rela:i‘;;.
q
B .. ~ 21 k+l/0
Th Ahz—Ah 7 h e, + O(h )
=1
(6.3) . . s et .
if (6.2) is satisfied, with k+1/0 < 2g+a and
. q+=max{mem|2mfk+1/o,miq}.
In sone cases, when (6.2) is satisfied we may, by a proper choice of (different) stepsizes
In the Jirections of different co-ordinate axises,even obtain s; = 0, that is (6.1). This
] case has been treated in Pereyra (23] for uniformly elliptic operators of the following
(casilinear) type
. n
- - - 2_1 3, (v )+ £y (), Ty () i @
(6.4) F y 1.3= 13
y(*) - g(*) on 3
R 2
with z a,. (-)Eii, >a llgll2 in § with o > 0 and for any real vector
i,3=1 )
T
£ = (51,...,5n). The discretization of (6.4) under the condition (6.1) is obtained by
“ using (2.4) in regular and irregular mesh points and by replacing in irregular mesh points
the nh(xthei) with xt+h ei € 3! by the boundary values g(xihei). Then Pereyra
[23] has proved (the smoothness properties of the e, in (6.5) may be checked by some
&
) additional computations).
Theorem 6.1: ILet (6.1) be satisfied and the operator Fc in (6.4) be discretized as
described above. Further let a,. e CT*(), £(+,+,») ¢ T (@B) ana 3n ¢ 2T
[ 1] 2q+2+a 1.2 ’ soes - 22qt20, <
b geC q (302)s zEC () and "geometric" conditions for 9 be satisfied.Then z< C (Qland
_ 21 41 2q+ . 2(g-1)+24a o
. (6.5) g,-8,z = B, 1?1 hle, + O(R“ Y'Y, e () EC ().
~29-
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7. Discrete Newton o' and deferred corrections

As an immediate consequence of the results In 5 5, ¢  we mav toc achard on eNtog
polation techniques to get higher order results. The agencral apiroach o given
Bulirsch-Stoer {13) and applied to the Tirichlet problem for the Porsson eapiation an
Pereyra-Proskurowski-Widlund [24]. So we only give the result here.

Theorem 7.1: By applying Richardson extrapolation once resp. twice to the methods given

-

in Theorem 5.3 for k = 4 resp. k = 6 we get approximations of order 3.5 resp. 5.5 in

f,-norm. If (6.2) is valid orders 4.5 resp. 6.5 are obtainable by .. :- .. - ol
2_ —

three extrapolation steps. Even higher orders (up to 2g+l, see Theorem 6.1) are obtainable,

if (6.1) is satisfied.
Using Richardson extrapolation requires the solution of the nonlinear system
(¢hF)" = 0 for decreasing h . That implies, for higher dimensions n _s*y.:,.-

p cpme e e s e amas P R T S e are able o oawv-l. -
S§ilZes <. the 3vrsiems oI non CEAY e2uatonny TooLe Sllvel. s are able Ul

disadvantage by either applying Pereyra's (22) iterated deferred corrections or iterated

defect corrections or descrete Newton methods [6,8].

The first two methods require for every correction step the solution of a nonlinear

equation (of the same size) where the original right hard side O has to be changed, In
discrete Newton methods only the original nonlinear equation has to be solvec,
The corrections are obtained by solving linear systems (of the same size)with a
fixed matrix and different right hand sides and therefore need nuch less computational
time,

Most of the conditions for the applicability of iterated defect corrections
are easily verified, whereas for discrete Newton methods we need a lot of technical
formalism. So we prove the results for iterated defect corrections and present
discrete lNewton methods and sketch deferred corrections without proof, For deferred
corrections we have to approximate (only k=6 is discussed here) the local discreti-

zation error (th)Ahz given in (5.2) as (th)(Ahz)(x)=h2bl(x) + hubz(x) +

v (0,0,vl...,vn)
Now we have from (5.2), with - fi=f O '
v AV 1 n
3z, "1,, .3z ¥n
1 n
2 n a,(x) .4 3
2 . h i d z(x) . 37z(x) 3
PRy e LS TR S S x2(0,9200))
=1 X, X, i
i i
and
_30-
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e |
g }
;i," E
!i ’
7 4 n a.(x) .6 5 b
4 _h i 9 z2(x) . B
h bQ(") = 120 l Z {- 5 2_6 + ——Zg 3% f(x,2(x),9 z2(x))}
= ax, ox, i
: o i 1 '
B
3 2
5, 7 9%2(x) 2
+3( ) LE2X 9, fx,2(x),v z(x))]
3 i=1 3x.3 aZi
i
P 2 2 4 1
and sO we need approximations for h bl(x) an: h bl(x) +h b2(x) of the order 4 ;. .

6 respectively. Now the same remark ist appropriate for irregular points with
™ respect to s »+ 1 for the behaviour of the av/aO as given in Pereyra-Proskurowski-
Widlund [2u], p. 9.
In iterated defect corrections and in discrete Newton methods we have to
discretize equations of the form

e in Q )
e*on o

(7.1) Foy: =F_ytd, with d: =(

For defect corrections Fo is given as F in (2.1), whereas FOE L(Cz(Q) n ey,
C(2)xC(3)) for discrete Newton methods. With the discretization, defined in 2.,
we obtain
(thd) N, S(@F In, + Qd, !
(7.2) where @ F is described in §2 and
. QhE L(c(Q)x C(BQ),(Fh,nnﬂ)x(Gh,nOBQ)).
For the considerations below we have

N

_fein @ _ (el
* (7.3) d = (O on 0 ) and therefore th = (o Fh,an)’

whereas for e*#0 in (7.1) the component of th in Fh’an is more compli-
cated since the boundary values enter the difference equations for
irregular points in (2.6). However, in either case th is independend of N,
Discretizations, for which (7.1) implies (7,2), are called strongly linear, see
Bohmer 8]. In [8] we have proved that , if Fy + d = 0 is uniquely solvable for

’ small enough || d || and if the strongly additive discretization method generates
th independend of Nps @ stable (phF and an error asymptotic, where the coefficients

. e, in (5.7) are elements of linear spaces with certain properties, see

e Ly
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Assumption 2.4 in [8] par+ I, <he I-erates “efect corrsc-icn provizes Ui vl

the results givern below, ALL cordiizicnz ~ernticrel zicva, euiert Ass . i
have been shown to be satisfied, Assumpticn .- Iz, for cur elliptic prolls .

a consequence of the smoothness requirerents In Thecrer 1.7, which we 2 1.7 w3 ‘

to formulate explicetly and of the structure of ¥ in (.., ec [ 2] [rar-
For discrete lewtol methods arn! itsrate: fefect corrsctiing we nave

compute defects in the form

(7.4) 4 = 1rzﬂ_l, L= 1,000

That means, we need extension operators which exzernd Ilscrete approwimaticn.,

as n, and g, , defined on (Th _ﬂ.Q"x(GH rnBQ), to convtinuous functlicns w_ €L, .o
ST h,n

h’
o . . . s A
that Fy:_1 or at least Ah FyH is defined., This may be done in Iifferent wayc,

all based on the observation that it is enough to use univariate Interpelati:c:

or approximation operators T. For a point xESH we then find along a grii Ii
)

i-th coordinate direction the situations in Figure 3:

Figure 3

In Kyreoosx, e know the corresponding Nyreessh, (as the approximate values given by

the difference equations (2.4)-(2.8)}, Here r depends on x and the direction e;-

1 1
and 41 by the appropriate formulas (2.5). Let

Further we know in x* and x; the n* and n; from the boundary condition. Finally .

we may compute n

n;E Hid (nolnlrn--ln

0

rlnr+1) . .
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Metho: 1: Continuous piecewise polynomials:

- With a A > k, k as in (2.5), define T as (I) are the solynomials of legrae

———y

» and [s] = entire part of s)

r+l
. P,: = In_ | i € M, ,u=0,1,...,u%: = [T]' Z,
* A b (xuk’“(ufl)k) A

Pu(xi) =N i = ph,.. o, (Url)A,
(7.5) 1

P o

1= Ty |
bt h (x(dgl)l’xr+l)

Pu‘+l(xi) =N, i = p+l-X,...,r+l. O

L
Method 2: Spline-functions:
Tefine T as a spline-function of degree X > k as Jdiscussed in [,8,8) . o I
Method 3: Overlapping polynomials (discrete splines): !
Let A=A*+2 x >k, « = 1,2,3,4 and define T as !
\
- . PO: = Tn ( ) € HX,
¥orXaksc
i
_ . Po(xv) n,sY = Osuvashy
+K
(7.6) & P:=Tn €M ,u=1,..., bl 1,
" Mlix % Lx x ) X A
PA +T(utl)A 4K
- _ rtK
Pu(xv) =n,, V= PAR, L, (Ut D)A®+2¢, uo= 1,...,1 7;—] -1,
The last polynomial is defined analogously to (7.5) O
- Method 4: Symmetric formulas and polynomial extrapolation[ 8,241 :
Interpolate the points (xv,iv),for V = 0,1,...,kyV = P=ktl,...,rt],
. vz=1,...,A + 1, and v= r-i,...,r by polynomials Pk,i’ Pk,e’ P)‘,i and Px,e,
respectively, and compute extrapolated provisional values ‘
(7.7) n, =P .(x )v=-1,-2,,.. z z
' v * P, i(xy)s s72.ecand n = B (x)), V E re2,re3,..,
s and
!
) (7.8) n, =P (x),v=

v PURALY 0,-1,-2,... and n,= Pk,e(xv)’v = r+l,r+2,...,




respectively. Then use for i = 1,.,3 symmetric Tormulas, faset on 7,7, 1 inc
to compute the lefect Fz. . In ¢7.4). Fer points ~10 2 - HENES S

-l
points are necessary to ccmpute these approximatizns. The uter values

are obtained as provisional values from polynomial extrapolaticn and have
to be updated after every Iiteratior as far a: necessary. O

For other nrasinilivier oo [8).

To formulate iteratel defect corrections we have tc replace F in (2.0)
by Fi~l defined as

Fg_ly: = Iy - F:E_l,ﬁ = g

In the discretization we need Fz, . only in (T_ N 1) U(5 N3, Jince the

-1 3D .y RN

satisfy the boundary condition in the grid points G N 33, up to rouni-cf:-

gl

errors, we are in the situation (7.3) and obtain

(thR-l)nh(X) (@, Fin {x) - F (x) for » € QU T

Zo-1

(7.9)

(%fb1M§x) n#x)her%hm N,

Now the iterated defect corrections are defined as follows

(i) given the starting value Ty oGy Such that (@ Fig =3
'Y Ml

Ch “h,o

compute z and § from

g-1 7 o, g1 b1
(ii) (thQ—l)Eh,K—l = 0 with @ Fy_y in (7.7,

(7.10)

‘os . P .e _ . P
(iii) finally, define ch,l Ch,o (gh,l-l Hh,i—l)’[ DU .

In discrete Newton methods we have to discretize lirear equations of the
form

(7.11) F'(zo)(zl-zl-l) = -le-l'

So we need, see (2.4) and (2.10),
rh(x+hei) - 21h(x) + rh(x—hei)
h2

r n
(0 F' z N1 (x) = - izl a; (x)

n T,_(x+he.,) - T1,_(x~he,)
(7.12) {+ § f(EL;;;Ll'°"'°’(x,zo(x),Vzo(x)) S
i=1 i+2

L + £(0/1,0 "'O%X,zo(x),Vzo(x))Th(x) for x ¢ Q -

=34~

.y I —— - __



v

B

ore 37 the methods Zefineld above. In [¢,3] we have shown that, unuer coniizion:
satisfied here, we Zo not need in (7.11) F'(z ) exactly, but that we may [ i
Gy to an ™z ) which is ortained fron 'z ) by rerlacing Vo (x) b
e -
:3(x+he‘) -z {x-he.) o (xthe ) - = (x-he )
S s N ) N > L o o
(7..3) ( ey — ) s Vo (x).
R o 2
low we are realy tc formuliate our liscrete lewton methol for the
problem {...). Let @, T, as zefine: In (l.e)-t.. 7). Do%e 0e=fi (e ) and
h . S o
Fz*(zo):: ?*(:O),by replacing in T'(;h) T :
(7.13), @ 7% (7 ) as In (7.1.) an? use one of the opperators T in Methol l--,
h'v o i
( (1) given the starting value Yo T % such that
h, b

(wnr);_ =0, el le

(7.14)
compute ch,E,Q Z 1,2,..202

i
( T

(i) (@ F*(z (g, -5, ._.) =~ S \ .

h ° h,2 “h,&-1 L0 on G nn BQ\

Vig

This method is called discrete Newton method. As indicated already in

Pereyra-Proskurowsti~-Widlund [24] the order results for deferred correcticns
k]

als well as for discrete Newton methods and iterated Zefect corrections, are

,
rather poor due to the fact that in (5.7) we have only ot ),

. . Kt .

instead of an O(nk l) which would correspond to the well krniown order results

k = 0and k = 1.

Theorem 7.2: Let k = 6, » > & in Method 1-4, and let the coniitions in
Lheorem f-<x 18

ABta, =
Theorem 5.3 be satisfied with q = 3 and a > 0.5, so z € C (). Further,

let Tho1 be defined either as the first deferred correction or by (7.10) or
22 Gy, 2=

(7.14): Then
(7.15) 4 = A z + 0(h
h,1 h

s

3.5)-

Further, if (6.1) is satisfied we have instead of (7.15)

4.5

)
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(7.16) g =4 (zth'e, }+ O(h
k]

L,1

for




If we compare the different types of defect ari Zefcrrel corre.t.
with the Rici..rdson extrapolation, the main advantage cf the extrapclaci
to work up to order 5.5 compared to orler 2.5 for the orther methods an:
provide us with asymptotic upper and lower bounds for the exact sclutic:
(see Bulirsch-Stoer [13] ). However, one has to pay for these alvantages
by much higher computational time than for discrete Newton methods or cre
of its equivalents. Expecially for nonlinear problems (z.Z) the Ziscrets
Newton methods yield the corrections in a relatively small armount cf
additional computations, by solving linear equations with a known ma<trix wwice
(see 8.). For those problems the discrete Newton methods are even supericr <<
iterated defect and deferred corrections which furnish the correcticrns i
solving nonlinear systems of the initial size with very good krnown
starting values, whereas Richardson extrapolation needs the solution of

ncnlinear systems, with numbers of equations proportional to 1/k™,

8. Computational remarks:

In equation (2.6) the fraction al,i/ao,i will become verv large if s;
is close to 1, that is, if the irregular point x € Qh,i is close to the
boundary. Therefore we will scale the equations in (2.6) always so, that
the coefficient in the linear part of nh(x) becomes 2na.

If (2.2) is linear we may use any good method to solve the linear
system (2.4)-(2,6). The choice of the method very much depends on the
properties of f, see e.g. Rosser [25] . In many cases it will be possible
to get the corrections in the discrete Newton method (we chocse v= 2 in
(7.10) for such a case) by considerably less computational effort. That is,
fer cxample, true if the differential equation in (2.2) is the Poisson
equation (treated in Pereyra-Proskurowski-Widlung [24] or the Helmholtz
equation Az + cz = 0, ¢ = constant).For both equations one can very well
use the fast Laplace solvers as described in [24] and then gets the

corrections pretty cheaply.
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If (2.2) is nonlinear, the system (Z2.4)-(2.8) will =e ==

ronlirear, too, In
most cases one will then use the Newton method
[] - = - F = con
8.1) 0, F)"n, ) ngny ) e, Fin, ;v &= 1,2,
to obtain the solution l:‘h = lim Ny of (2.4)-(2.8). 1If an appropriate stoping criterium
J

for the iteration (8.1) has been chosen, so ¢,  := n

h , one may often use the already

L
known matrix (th)' (”2—1) for s’/‘h(F*(zO)) in (7.10). So,acain,the corrections by the
discrete Newton method are obtained relatively cheap.

Finally, we have pointed out already in 7. that for a proper choice of h the
discrete Newton method may be executed on a fixed grid rh,n and (6.2) will usually be

. satisfied. So the chances are pretty good that a =e .0.@ “-vvec-iocn Irprove o o0 -

mation. In that case it is worth-while to use A = k+1 in Methods 1-4.

If (6.1) is satisfied,and the situation is smooth enough it is advisable to take

pretty hig (X > 10). Because of the loss of asymptotic terms in the methods discussed

in Theorem 7.. Richardson extrapelation might still be Interes:iig for le:s

smooth situations.




3. Numerical exanples

As demonstrating examples we use bouniary walue problems, all on the zave
domain Q, lefined by the differential equaticens ¥,z = 2, I = 1,.,.,~, and o

the bounlary values, which are the restrictions of the exact soliutvions

z., 1 = 1,...,4, to the bouniary 3. Zo we have

Vo

(y) | (x=0.5)" + (y=1)° <37}

Foz: = zxx+2y" + 2z = 0, zlx,y) = sinlxy);
<+ J
(9.1)1 Fzz = zxx+zyy + 13z = ¢, z(x,y)= sin(ix+3y);
F.z = zxx*zyy + le-‘Z=G, z(x, )= In(x+y);
Foz = zxx+zyy -100920 , zix,y) = (x+y) ",

With the discretization in §2 we obtain whrl anc @ F. as systems of lirear,
4 o<

®hF3 and G%F“ as systems of norlinear equations respectively. The first step i

(7.10) and (7.34) is to solve (thi)Ch = 0. The ronlinear systems, for i = 2,-,

is not to te mixed up with the

are solved via the usual Newton method,see “&,(wni
discrete Newton method below). The matrices of all the problems above are

positive definite and, for the special case of & in (9.1), symmetric. 3c we
solve the linear equations by using SOR methods combined with techniques to

estimate the optimal relaxation parameters. For the linear problems F, and F

1
these relaxation parameters have to be estimated only once, since the
discretization thi’ i=1,2, and the discrete Newton method are based on the

same matrix. For the nonlinear problems the matrix in the discrete Newton

method is often replaced bv the last matrix in lNewton's method to solve the
nonlinear system (u%Fi)Ch=O, i=3,4. 50 the estimation for the optimal relaxation
parameter in the last Newton step again may be isel in the discrete Newton method.

Therefore the iterationsin the discrete Newton method are rather cheeoly

available.
In the following Table we give the errors || ¢ -Ath for v = 0,1,2
h,v 2

and for k = 3,...,6, where k is given in (2.5 ). The defects in the discrete

e+ 4 A —— - Sa— -
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E5S

lewton metncis are computel with methols I and -, see . In methol I we
use overlapping polyno.ials with « = I and in method - we only Iocument thnse

results, where we have usecd

provisicnal values for the ocuter points which we need for the symmetric

divided zZifferernces. Because or (7.15) we have

» -
- Lz
Ch,v-_ ot “hyu-l Ch,v
Therefore the correction I, . -mLy oy May be usel as an
g VT 1299

has been use:

error -4, z, especially g .-

Sh,u~1"tne €SP S AR
The nunzers qare defined as quotients between these estimatel errors anl the
real errors,

The following numbers are computed on a UNIVAC 1108 with dcuble precicic:n

(about 18 digits). I want to thank cand. math. H. Offermann, who did the

computations.




Example

Example 1

method 3

error

metheod

method 4

error

(o3

error

q

q

\Y

O™

C “+,8,=-04
.8

1.4,-07
2.3,-09

1.0
1.0

2.0,-08
2.4,-10

1.0

0.9

4.2,-10
8.6,-12

1.4,-07

.0
.0

1
1

1.0 2.0,-08
2.4,-10

4.,3,-10

1

1.C

08

.5,-

1.c

1.5,-07
2.8,-10

1.0
1

2.0,-08

1.0

4.2,-10
9.6,-13

1.0

2.4,-10 .0

1.0

Example &

Example 3

2.4,-05
7.7,-08
1.6,-08

1.0
0.9

2.5,-06
2.3,-08

1.0

.5,-06
6.6,-09
1.1,-09

0 2

1
2

1.1
0.6

2.5,-09 0.8

3.6,-08

1.0

6.4,-08
2.4,-09

2.8,-09 1,0 1.8,-09 1.0

1

1.6,-10 0.8

o

Table

= 3, the first correction is worthwhile

From this table we see that, even for k

considerably

6, two corrections

arger values of k, especially k =

1
4

and for

improve the approximation and that, expecially in method 3, the third correction

still gives an excellent estimation for the error.

- 4

R o e o R
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